
Parallel to exponential growth of the web during the last few
years, digital mobile telephony has evolved to become a
basic commodity in the United States and many parts of
Europe. Particularly in the Nordic countries, penetration can
be as high as 60% (Finland). The world’s largest manufac-
turers of mobile phones predict that there will be 1 billion
mobile telephones in use in five years time. Currently,
mobile communication is still mostly synonymous with
voice telephony, but this is almost certain to change pending
new mobile data communication technologies being
deployed, increasing data speeds and improving usability. In
particular, this development should be viewed in the context
of network technologies such as GPRS (General Packet
Radio Service), allowing for data speeds in the range of 115
kbps and service technologies such as WAP (Wireless
Application Protocol) which sets an industry standard for
web-like, interactive applications for use with mobile tele-
phones.

WEST: A Web Browser for Small Terminals

ABSTRACT

We describe WEST, a WEb browser for Small Terminals,
that aims to solve some of the problems associated with
accessing web pages on hand-held devices. Through a novel
combination of text reduction and focus+context visualiza-
tion, users can access web pages from a very limited display
environment, since the system will provide an overview of
the contents of a web page even when it is too large to be
displayed in its entirety. To make maximum use of the lim-
ited resources available on a typical hand-held terminal,
much of the most demanding work is done by a proxy
server, allowing the terminal to concentrate on the task of
providing responsive user interaction. The system makes
use of some interaction concepts reminiscent of those
defined in the Wireless Application Protocol (WAP), mak-
ing it possible to utilize the techniques described here for
WAP-compliant devices and services that may become
available in the near future.

Keywords

Hand-he ld devices, web browser, proxy systems,
focus+context visualization, text reduction, flip zooming,
WAP (wireless application protocol)

INTRODUCTION

The World Wide Web (WWW) currently consists of about
half a billion pages, offering users a vast range of informa-
tional resources. However, these pages are almost exclu-
sively designed for use with desktop computers, i.e.
computers with large high resolution screens, powerful pro-
cessors, and an abundance of primary and secondary stor-
age.

Staffan Björk,
Lars Erik Holmquist and

Johan Redström
Viktoria Institute

Box 620, SE-405 30
Göteborg, SWEDEN

{bjork,leh,johan}
@viktoria.informatics.

gu.se

Ivan Bretan
Telia Mobile AB

SE-131 86 Nacka Strand
SWEDEN

ivan.p.bretan@telia.se

Rolf Danielsson
Telia Research AB
SE-123 86 Farsta

SWEDEN
rolf.j.danielsson

@telia.se

Jussi Karlgren
and Kristofer Franzén
Swedish Institute of
Computer Science

Box 1263
SE-164 29 Kista

SWEDEN
{jussi,franzen}@sics.se

Figure 1: The WEST browser on a simulated Palm
OS™ display

The work presented here focuses on this encounter between
the WWW and mobile telephony, and more specifically on
the need to provide gateways between mobile technologies
and existing web resources. Although mobile terminals
require specially designed formats for optimal usability due
to the constraints of the user environment, it is not likely
that all information available on the web will be translated
into these format in advance. Thus, there is need for some
kind of automatic on-the-fly transformation of existing web
content to mobile formats, in order not to shut mobile users
out from the bulk of web resources.

In dealing with this issue, the crucial problem is not as much
a lack of bandwidth (which the new network technologies
are dealing with) or the conversion from one mark-up lan-
guage to another, but rather developing techniques for the
adaptation of information to the usability requirements of
mobile terminals. Innovative use of techniques for informa-
tion filtering and information visualization seem to be a
fruitful approach in dealing with this problem, as such tech-
niques deal with issues that are part of the problem of pro-
viding information on small mobile devices.

New ways are needed to present web resources and to navi-
gate among and within web pages, which is the target
domain of the work described here. The constraints on
information presentation posed by small terminals made it
necessary to combine several different strategies in order to
achieve a sufficiently compact presentation. In different
fields of research, several techniques for creating compact
representations have been developed. In WEST, techniques
from computational linguistics and information visualiza-
tion were combined. The original web-pages were com-
pressed both in terms of their linguistic content by means of
text reduction, and in terms of their visual presentation, and
were then presented to the user by means of focus+context
visualization.

The rest of the paper is organized as follows: First we give a
brief overview of the WEST system and its components. We
then give a background in related work, required for imple-
mentation of the system. A detailed example, where we see
how a user may interact with the system follows. We then
describe each of the components of the system in further
detail, and give an account of an early user test of the sys-
tem. Finally, conclusions and future work are discussed.

THE WEST BROWSER
WEST (WEb browser for Small Terminals) is a web
browser specifically designed for use on hand-held devices
with limited resources (see Figure 1). Although most of the
actual implementation was done in Java running on a stan-
dard PC, in order to achieve a realistic simulation of the
conditions of mobile computing we based the design of
WEST on the capabilities and limitations of popular PDAs,
such as the 3Com Palm™ line of hand-held computers.
Such a device would typically have a small touch-sensitive
black-and-white or grey-scale screen with a resolution of
about 160x160 pixels, a memory of about 0.5-4 MB, a pro-
cessor running at about 10-20 MHz, and no provision for
traditional keyboard input. These capabilities have proven to
be quite adequate for the tasks which such devices are cur-

rently required to perform, but are of course far below the
specifications of any current desktop computer. The chal-
lenge was to work within these limitations but still provide
the user with a workable browsing experience, and in the
process attempt to overcome the navigation problems that
would typically occur on a small terminal.

Our solution consisted of two parts:

• A proxy server (running on the user’s ISP server), that
would take a standard HTML page and transform it in
real-time into a format suitable for browsing on small
screens

• A client application (running on the hand-held terminal),
that would allow the user to view and interact with the
web pages as provided by the proxy server

The reason for letting the bulk of the processing of the
HTML pages be done on the proxy server rather than by the
terminal was to relieve the comparatively under-equipped
terminal of resource-intensive tasks, thus allowing it to con-
centrate its resources towards providing responsive user
interaction. Furthermore, by stripping away unwanted infor-
mation on the server rather than on the client, a saving on
bandwidth might also be made.

The proxy processing was comprised of several stages:

• A chunking stage, where an HTML page was divided into
a number of smaller pages, or cards, which were then col-
lected into groupings, or decks

• A text reduction stage, where a set of keywords summa-
rizing each card were extracted from the text

• A link extraction stage, where all the hyper-links on each
card were extracted

The resulting cards, with supporting keywords and links,
were then passed to the client. The client application would
then provide the following display modes:

• Thumbnail view: Here, a focus+context visualization
comprising miniature views of the cards (or top-most card
of each deck) was provided

• Keyword view: Here, rather than presenting thumbnails,
the keywords extracted from each card were presented

• Link view: Similar to the keyword view, but rather than
displaying keywords, this view showed the links available
on each card

(A pure text view, showing only the text with no images or
formatting, was not included in this prototype but could be
useful in some situations and might be added later.)

Each view allowed the user to zoom in completely on a
card, providing a fully readable view of the content. The
user interacted with the views using the flip zooming
focus+context visualization technique [16], through which
the system provided an overview of the material with simul-
taneous access to the individual cards.

RELATED WORK
In designing the system used in the WEST prototype, previ-
ous work from several different research areas were applied:
Proxy systems to provide intermediate formats of the web

pages; text reduction algorithms to find suitable keywords in
the pages; and information visualization techniques to dis-
play information on the limited screen space available.
Some properties of WAP, the Wireless Application Protocol,
were also considered.

Wireless Application Protocol (WAP)
WAP [32] is a de facto standard for providing Internet-based
content and services to wireless devices such as cellular
telephones, and requires resources to be coded in a dedi-
cated mark-up language called WML (Wireless Mark-up
Language) adapted to the limitations of such devices.
Although the WEST architecture is not specifically
designed to work in conjunction with WAP, there is poten-
tial for interesting synergies when it comes to user interac-
tion.

Firstly, the concept of deck (approximately corresponding
to a page in WWW, i.e. a single resource transfer) and card
(sub-unit of deck, i.e. a single display object) in WAP lends
itself very well to visualization using flip zooming. The
overview mode captures the collection of cards, i.e., the
deck, whereas the zoomed view corresponds to viewing an
individual card. Because of this nice correspondence, we
have adopted the WAP terminology of cards and decks in
the WEST system, although WAP protocols are not cur-
rently used in WEST.

Secondly, given a PDA type of device with WAP capabili-
ties, a WEST browser could readily be converted into a
WAP browser, i.e. processing WML instead of HTML.
However, when it comes to mobile phones with small text-
only displays, this is of course a completely different issue.
In this setting, the simplest way of using a WEST browser
would be to navigate in zoomed-only mode (i.e. without the
context overview). A more advanced solution would involve
creating overviews through keyword or link-extraction.

Proxy Systems
The notion of using a proxy server to mediate between the
Internet and thin clients is well established [9, 23]. A proxy
of this kind can have many functions: coding and conver-
sion of protocols; filtering, compression and conversion of
information, etc. The WEST proxy could be tailored to
include protocol functions, but the work presented here
focuses on the information handling aspects of a web proxy
for mobile devices. By removing unwanted or unnecessary
information, and by compressing and restructuring (chunk-
ing) the information, it can be made to better suit the usabil-
ity demands of mobile terminals. When it comes to
information compression, we can distinguish between lossy
and non-lossy compression. This distinction is normally
applied to images [9, 23], but in the context of WEST we
will be dealing with lossy text reduction in the shape of text
summarization techniques.

WEST has in common with the Top Gun Wingman browser
for the 3Com Palm™ PDA [10] the basic principle of hiding
complexity (such as HTML parsing and analysis) in the
proxy server to off-load the handheld device. The idea of
saving screen real estate by using text compression has been
put to use in another proxy-based system known as the

Digestor [2]. Proxy systems can also be used as support sys-
tems in “surgical” extraction of information from WWW
and other sources, providing semi-automatic conversion of
such pre-determined content into format suitable for thin
clients, such as WML or Web Clippings in the Palm VII™
PDA. Panama from Oracle [26] is an example of such a sys-
tem, which converts HTML and other formats into XML,
from which selected WML fragments can be generated by
means of stylesheets.

It should be noted that the work presented here does not take
a stand as to whether pre-authored content (e.g., a WML
source) or automatically converted and filtered content (e.g.,
HTML–>WML or HTML to simplified HTML) is the stra-
tegically correct way to produce services for the user of
wireless handheld devices. We content ourselves with the
observation that there will be a demand from mobile users
for accessing arbitrary web-based resources, particularly in
the initial deployment period where dedicated mobile ser-
vices, WAP-based or not, will emerge slowly. Initially, the
range of services and content for mobile use will be limited,
since information providers will be reluctant to invest in
parallel coding of content. Gradually, this will change (par-
ticularly if systems such as Panama are used, which allow
for re-use of existing web resources), but there will always
arise situations where users want to access material not pre-
adapted to dedicated mobile formats. The WEST approach
tries to address the needs of such users.

Text Reduction
For the keyword view, a text had to be summarized into a
few words. We call this technique text reduction, to distin-
guish it from traditional text summarization. The major
challenge for traditional text summarization techniques is
two-fold: understanding which regions of a text bear the
most pertinent information, and cobbling those bits of infor-
mation together into a coherent summary. In the case of
small screens, the space requirements are more demanding,
which actually makes the task somewhat easier. Coherence
will not be an issue, since the aim will be to extract a small
number of information-bearing terms from the text, making
the task closer to the field of index term selection than that
of text summarization.

Index terms are typically selected based on term frequency
as originally proposed by Luhn [24], selecting suitably fre-
quent terms to represent a document. However, the most fre-
quent words in a text are usually form words, which bear
little or no topical information (“is”, “and” and the like).
These words must be filtered out either through the applica-
tion of a judiciously composed stop list or through the appli-
cation of estimates of term specificity [30]. These are terms
that occur in all documents in a document base and have no
indexing power; terms that occur in few documents are
more useful to that end. Typically, the two measures are
combined, in a standard “tf.idf” formula (e.g. [29]). This
was the basis for the keyword extraction algorithm used in
our application.

Viewing Web Pages on Small Screens
Although personal digital assistants and other hand-held
devices have been available for a number of years, the prob-

lems associated with user interface design for small termi-
nals have only recently started to attract attention from the
human-computer interaction research community [18, 25].
While many general principles for human-computer interac-
tion also apply to small terminals, they can not always be
taken for granted, and to simply transfer interaction compo-
nents from desktop computers will often lead to unexpected
problems [15].

Earlier research in information visualization techniques
have focused mainly on maximizing the use of screen space
on ordinary computer screens. A number of focus+context
techniques have been developed to give users access to
simultaneous overview and detail. General focus+context
visualizations techniques such as the Generalized Fisheye
View [11] or techniques developed for text documents, such
as SeeSoft [7] or the Document Lens [27], might be adapted
to the WWW. General zooming or multi-scale interaction
techniques which have also been used for visualizing web
pages include PAD++ [1], Cone Trees [28], Hyperbolic
Trees [22] and Elastic Windows [19], and techniques devel-
oped specifically with the web in mind include the WebBook
and the Web Forager [6], Zippers [5] and CZ Web [8].

Although most of the techniques above have been developed
for use on traditionally-sized screens, some of them might
feasibly be adapted for use on small screens. However,
many of these techniques have advanced requirements in the
form of computational resources for performing smooth
graphical transformation and providing responsive interac-
tion, and while they may often have proved useful on desk-
top machines, hand-held devices such as those on which the
WEST system are intended to be used, are currently for the
most part not capable of any advanced visual calculations.
The focus+context technique flip zooming that was used in
this project was also originally developed for ordinary
screens, but because it is not very resource-intensive it has
proven possible to transform it to smaller devices. For ordi-
nary screens, it has previously been used for visualizing web
sites [14], and has been generalized to handle hierarchical
material such as hierarchically ordered image collections
[17]. As part of the WEST project, we have evaluated flip
zooming as an alternative to scroll bars on small screens [3].

INTERACTION IN WEST
To give a better idea of how the WEST browser works, we
will now give a detailed account for how a user may interact
with the system. This will take the form of a complete inter-
action scenario, with an illustration for each screen the user
will see.

The example page viewed in a tra-
ditional browser on a 160x160
pixel display

As our example, we have used a page reporting baseball
news at the Yahoo Sports site. The page was comprised
mostly of text – 319 words, or about 1500 characters. There
were 15 links to other pages, plus a banner advertisement
and a search function. As the figure above will attest, view-
ing this page on a traditional browser on a 160x160 pixel
screen presents serious problems. Only a very small part of
the page would then be available at any time, giving almost
no clues to the size or context of the material.

Flip Zooming in WEST
The interaction in WEST is based on flip zooming, a tile-
based focus+context visualization technique. Flip zooming
allows users to navigate a data set consisting of sequentially
ordered discrete objects, e.g. images or pages of text. One
object is in focus, the other objects provide the context.
Users can move the focus backwards or forwards in the data
set, or select any visible object as focus object by pointing at
it. Users can also zoom in further on an object, allowing it to
occupy the whole screen. Objects are ordered in a left-to-
right, top-to-bottom fashion, so that any object that is after
another object in sequence will be placed to the right and/or
below the preceding object.

Earlier user studies of flip zooming applications [4] have
indicated that users may become confused if thumbnails and
focus objects are allowed to change their positions on the
screen, or if the display is too packed with information. For
this reason, we limited the maximum number of objects on
the display at any one time to seven, which allowed us to
keep the focus object at the center of the display with suffi-
cient room to display the context objects at a reasonable
size. It may seem that in some cases we are not using the
available screen estate to the maximum, but this is a con-
scious trade-off to provide a clearer and more easily-under-
stood display.

In WEST, some objects on the display are in fact representa-
tions of several objects, since they represent the top-most
card of a deck. In this case, when zooming in on such a card,
a user would be presented with a view of all the cards in the
deck, which could then be navigated as usual. In this way,
the user is in fact navigating a hierarchy comprised of decks
and cards. In the example this hierarchy is only one deck
deep, but there is no reason why it could not be more com-
plex.

Interaction Example
We will now follow a user interacting with the sample page
using the WEST browser. The user wants primarily to read
about her favorite Chicago Cubs player, Sammy Sosa, and
possibly chat about his exploits with other supporters.1

1. The authors know very little about the game of base-
ball, and apologize in advance for any errors in this
account that may be spotted by more knowledgeable
readers!

1. Thumbnail view, whole page,
with first card in focus

1. Initially in WEST, the viewer is presented with the
thumbnail view, which gives an overview of the whole web
page in flip zoom format. Here, each card is presented as a
thumbnail image, not large enough to be readable, but still
giving a sense of the overall nature of the page – e.g. image-
heavy, text-heavy, many or few links, etc. The first card or
deck is in focus, with the others presented as context.
(Unfortunately, there is currently no clear visual indication
of if a thumbnail represents a single card or a deck, some-
thing which might be addressed in future versions of the
browser.)

2. Keyword view, whole page, with
first card in focus

2. The user now chooses to switch to the keyword view, to
see if she can locate some information about Sammy Sosa.

3. Keyword view, whole page,
fourth card in focus

3. The keywords on the fourth card in the sequence indicate
that Sosa is mentioned. The user focuses on that card. This
can be done either by explicitly pointing at the card, or by
moving the focus sequentially until the desired card is
reached. (Since what here looks like a single card may in
fact be the top card in a deck, user will actually often be
navigating among decks in this manner.)

4. Keyword view, a deck open, first
card in focus

4. The card in question is in fact a deck, consisting of two
sub-cards in total. By zooming in on the visible card, the
first card in the deck, the deck is opened and displayed. The
keywords indicate that some kind of ceremony has taken
place, involving Sosa and home-runs.

5. Thumbnail view, a deck open,
first card in focus

5. The user now switches back to a thumbnail view of the
deck, showing the original HTML formatting of the cards.

6. Thumbnail v iew, zoomed in
completely on a card

6. The user zooms in completely on the first card in the deck
and reads the text on the card. It is indeed interesting news
about Sammy Sosa. Staying in this view, the user can now
advance to the next or previous card in the deck (e.g. by
pressing a specified button on the PDA or tapping on a por-
tion of the card with the pen), to read the full story. (If the
card on view happens to be the last in a deck, when advanc-
ing, the first card in the following deck will be shown.)

7. Thumbnail view, a deck open,
first card in focus

7. The user now wants to chat with other supporters about
this development. She zooms out again, returning to the
overview of the deck.

8. Link view, a deck open, first
card in focus

8. The user now switches to the link view, since she is look-
ing for a link to the chat page.

9. Link view, whole page, with
fourth card in focus

9. Not finding the link she is looking for in this deck, she
zooms out to reveal link view for the whole page.

10. Link view, whole page, with
seventh (last) card in focus

10. She sees a link to the chat room on the very last card in
the page, and focuses on that card. By clicking on the link
while the page is in focus she will be transported to the chat-
room page, meaning that the current web page/deck will be
removed from the screen and the chat-room page/deck will
be displayed.

DESCRIPTION OF THE COMPONENTS
The components of the WEST system were designed as a
number of modules that could be individually improved and
expanded as the system was developed. In the following, we
will describe each of these pieces separately.

Pre-processing, Including Card Chunking
Proxy servers for real-time pre-processing of web informa-
tion to be accessed using a mobile terminal is a proven tech-
nique used for instance in current web services for palm-
sized PDAs. In WEST, we made use of a proxy server to:

1. Filter and reduce the contents of web pages in order to
adapt them to the capabilities of the mobile browser (this
would mean among other things to get rid of JavaScript,
image maps, frames etc.)

2. Convert the reduced web page into n sub-pages (cards),
each of which can be readily presented on a mobile-
sized display (e.g. 160x160 pixels). Cards are inter-
linked to form a deck by arranging them into a suitable
reading-order

3. Produce alternative renderings of these cards corre-
sponding to different levels of detail. Typically a card
can be displayed in its full size, in reduced size and min-
imized. These alternative renderings are not necessarily
derived from graphical reduction – in WEST, one alter-
native when reducing card size is to use automatic text
summarization

Key element such as headings, paragraphs, pictures, tables
etc. provide hints on how the original page is structured.
These hints are used in the “chunking” of the page into

cards, i.e. determining break-points for card creation. The
maximum allowed size of a card is of course a limiting fac-
tor, which sometimes means that the information contained
within a card’s minimal natural page-chunk cannot be pre-
sented without some modifications (for instance image or
font size adjustments), or by splitting up the information
into two cards. (For more information on the chunking algo-
rithm see the appendix.)

The cards produced by the proxy are arranged into several
decks linked together in the original reading order. Because
of the limitations of the display, each deck was limited to
seven cards, the maximum that could comfortably be dis-
played using the flip zooming variant we had chosen. If a
page consisted of more than 49 cards (seven decks with
seven cards each) some of the decks would in turn have to
contain sub-decks of cards, creating a deeper hierarchy.

Extraction of Keywords
To extract the keywords that were to represent each card, the
method chosen had to be suitably general to handle any kind
of material. Since there is no way in advance to tell what
type of web page a user will be browsing, the system should
be equally at home at whatever topic it was subjected to,
including general news, sports, entertainment, and so on. It
would be feasible to allow the creator of a page to specify
which key-words are most relevant, but this would require
that pages were specially constructed for the purpose of this
system, and as mentioned, the intention was to give users
access to all pages of the web without any prerequisites.

Our text reduction algorithm relies on the fact that typically
several texts or text chunks will be compressed and dis-
played simultaneously. The text chunks are all short,
approximately thirty words. The word tokens in the text
chunks are tabulated for frequency, after the application of a
stop list filter of form words. Each chunk is represented by a
list of words sorted by frequency. These raw frequency
counts are then modified by inverse document frequency
[30] – each word will have its raw frequency count divided
by a factor depending on the number of texts it has been
found in. Thus, if a text has two words with equal frequency,
where one occurs in three texts and the other only in the text
at hand, the latter term will be weighted higher.

The text reduction procedure thus disfavors words that are
evenly spread out over the chunks at hand, and aims at rep-
resenting each chunk by as unique words as possible, in that
given context of chunks. Words that occur disproportion-
ately often in a given chunk, compared to other visible
chunks, are favored above the more generally frequent
words. But words with high frequencies that occur in many
texts are not discarded. They are set aside and used to gener-
ate a header for the group of text chunks under consider-
ation, and can be used for hierarchical reduction of the
entire group, although this is not done in the current version
of WEST. A group of chunks can be reduced to words such
as “baseball”, “scores”, “season”; individual chunks can be
more finely reduced to “sosa”, “homered”, etc. As men-
tioned previously, taking advantage of these headers could
be particularly fruitful when using small text-only displays
where the contextual overview does not fit.

As it stands today, the algorithm does not make use of mor-
phological analysis, thesauri or lexical categories, all of
which would increase the reliability of the results. Adding
surface level linguistic processing is a modular issue and
can be done without a system redesign: there are several
efficient general-purpose linguistic analysis components
suitable for this purpose.

Link Extraction
To facilitate a view of which links were available on a given
web page a simple link extraction procedure was created.
This went through each of the cards constructed in the
chunking processing and created a similar deck structure,
but where the content of each card would only be the hyper-
links.

Web Page Rendering
For the graphical presentation of the different cards, each
individual card had to be rendered as if it were a web page.
However, we were unable to write a full-scale web render-
ing engine within the constraints of this project. Instead, we
used the rendering engine provided by the HotJava Web
Browser [31] to produce an image of each card as displayed
on a screen of the required size (160x160 pixels). The same
images where also graphically compressed to intermediate
and thumbnail size. These pre-rendered images were then
used by the system for the graphical presentation.

Presentation and Interaction
Based on the flip zooming technique, the WEST browser
presents each web page as a number of discrete objects, rep-
resenting individual cards or decks of cards. The user navi-
gates between different objects by using directional buttons
or by directly choosing the object to focus upon with a pen
or other pointing device. For sequential reading of a whole
page, a user would generally switch to a full-screen view
and then advance through the cards by pressing a designated
“forward” button.

Each view in WEST only presents one level of the hierarchi-
cal structure of decks and cards that represent the web page.
To move between levels, the user zooms in on the object in
focus (usually by clicking or tapping with the pen on it) and
will thus go one level deeper into the structure. To go up one
level, the user clicks or taps on the “white space” between
the objects. This navigation might also be facilitated by the
use of “up” and “down” buttons, for moving up and down in
the hierarchy, analogous to zooming out and zooming in.

When the user goes down one level in the hierarchy, the
focus object takes over the whole screen space to show its
content. If the current focus represents a single card, this
card will be allowed to fill the screen completely to facilitate
reading. In the case of the focus representing a deck, how-
ever, a view of all the objects in the deck is presented.

The system provides three different modes in which the
material can be viewed: thumbnail, summary and link view.
When switching from one view mode to another, the posi-
tion of the focus in the hierarchical structure is maintained,
enabling the user to navigate in a suitable view mode to
locate a card, and then change to another mode (typically
the thumbnail view) to actually view the card. In the proto-

type, the user switched between the different views by
accessing a pop-up menu.

USER EXPERIENCE
To gain some insight in how the WEST prototype performed
with inexperienced users, we performed a qualitative evalu-
ation in which the prototype was compared with the HotJava
browser [31]. It is important to note that the test was in no
way intended as a “fair” comparison between two browsers,
since the HotJava browser was not developed with the inten-
tion of being used on very small screens. Rather, the inten-
tion was to gauge novice users initial reaction to the WEST
browser, and the other browser was provided as a reference
point only.

A test group consisting of ten subjects, all expert computer
users but with no experience of browsing the web on a PDA,
were set a number of tasks to perform both in the WEST
system and the traditional browser. The tasks consisted of
finding specific items in the material, and in some cases
required returning to a part of a page which had previously
been visited. The tests were performed on a traditional com-
puter screen, but both browsers were given the same screen
size as a typical PDA to operate in, i.e. a window of
160x160 pixels.

A questionnaire given to users after the test indicated that
they thought that the prototype provided a better overview
than the HotJava browser, ranking it on average 3.40 points
higher in this respect (5.30 vs. 1.90, standard deviation
being 0.68 and 0.99 respectively) on a scale of 1 to 7 with 7
being the best. It also showed that users thought searching
was easier with WEST than with HotJava, ranking it on
average 2.25 points higher on the same scale (5.55 vs. 3.30
with standard deviation 0.90 and 0.95 respectively). How-
ever, it was also noted that the flip zooming interaction tech-
nique took some time to get familiarized with, providing
some initial difficulties.

Although we did not collect any quantitative measures dur-
ing this preliminary experiment, the positive reactions of the
users did provide us with an indication that the ideas behind
the system should be worth pursuing further.

FUTURE WORK
At the moment, the system can be improved primarily in the
following areas: improving the chunking of pages; improv-
ing the techniques used for text reduction; and improving
the means of interaction with the system to make it useful in
various realistic situations. We might also consider the divi-
sion of tasks between the proxy and the client. At the
moment, most of the work is performed on the proxy to off-
load the client machine as much as possible. With faster
hand-held machines, there is no reason to believe that not
more or maybe most of the information processing such as
keyword- and link extraction could take place on the client
rather than on the server.

The chunking process still leaves much room for improve-
ment, since often the provided cards are not of the optimum
size for the available screen space. Improving the chunking
is difficult, however, since there will have to be a balance
between producing chunks that are logically coherent to the

user, and chunks that are of maximum size. To achieve max-
imum chunk size it is sometimes necessary to break the
pages at inconvenient places, even breaking text in mid-sen-
tence, but this should be avoided for the sake of the user. A
more thorough analysis both of page structure and user
behavior will be needed to improve this process. Also, inte-
grating the chunker more closely with the actual rendering
of the HTML pages would make the judging of available
space much easier.

The text reduction algorithm as it now stands is very simple.
It is based on well established and understood techniques
from text indexing, which guarantees a predictable, stable,
and somewhat mediocre result. There are two well known
bottlenecks in this type of information access techniques: 1)
we have too little knowledge of texts as texts to be able to
answer the question of what a certain text is about, and 2)
we have too little knowledge of what the text will be used
for and why the user wants it. The second problem is some-
what less pressing for this specific application: we know
that the text needs to be compressed, and we know what the
context is, namely what else is being displayed at the same
time. This knowledge we already utilize to some extent,
since we are able to generate a header for the texts in view at
any given time. The first problem is harder. Knowledge of
texts is limited if we view texts as simple bags of words. In
future work, we plan to utilize stylistic information [20] to
reduce different types of text differently: a legal text might
be reduced to a paragraph header, while a long-winded error
message might be reduced to a generic icon. We intend to
experiment with using text structure to tailor the chunking
algorithm so that it will feed homogenous bits of text to the
reduction algorithm (e.g. [13]). We might use language
technology such as surface syntactic analysis [21] and text
extraction techniques [12] to extract topical terms and other
topical items such as names, links, or dates from the text
segments. We are currently running a pilot project for multi-
document summarization, to be able to impose a middle
level of analysis: the idea is to collapse several texts into one
short summary, whereupon that summary in turn can be
reduced.

Finally, it might be possible to improve the interaction with
the WEST system in certain usage situations. Using a pen to
interact with a hand-held device is sometimes undesirable,
since it requires the user to hold the device with one hand
(or place it on a flat surface) and use the pen with the other.
Essentially, flip zooming only requires four navigational
actions to navigate a hierarchical data set (move the focus
back, move the focus forward, zoom in and zoom out), and
while the WEST browser requires additional input for
switching among the different views, it is in many cases
possible to use perform the majority of the navigation using
only four buttons without relying on a pen. This might allow
users to navigate with more precision and efficiency in some
situations, and ideally it might even be possible to construct
the system so that all navigational buttons were accessible
using just one hand, thus freeing up the other hand for other
tasks. This would make the human-computer interaction far
more flexible, as there might be many situations when hav-

ing one hand free would be beneficial: while talking in a
phone, taking notes, etc.

CONCLUSIONS
Truly mobile web access will evolve along several paths.
One path is the development of the “stripped-down” web,
reminiscent of browsing with text-only browsers such as
Lynx. The other extreme will result from miniaturizing stan-
dard computers into hand-held devices capable of handling
the same resources as stationary machines. These paths will
of course cross, and we will see combinations of dedicated
mobile resources and advanced hand-held computers. No
matter what, the restrictions of mobile terminals will always
hold with respect to the usage environment. We believe
work like WEST is important because it focuses on ways to
enable advanced interaction on small devices, ways that are
largely independent of the capabilities of both the network
and the terminal.

By constructing the WEST system, we have shown how
material on the World Wide Web can be made available for
mobile users and others who are restricted to accessing the
web from small terminals. By placing the major work-load
on the proxy server, and by providing a novel combination
of visualization and text summarization, existing web pages
can already be made much more suitable for such devices.
In the future, with the continued acceptance of hand-held
devices and high-speed wireless network, browsing the web
from a PDA or a mobile phone will be a common occur-
rence. In these cases, systems such as WEST may aid in
making this a much more pleasurable and productive experi-
ence.

ACKNOWLEDGMENTS
Thanks to the other members of the WEST project, Roberto
Busso and Peter Nilsson, and to the anonymous UIST
reviewers whose valuable comments helped improve this
paper. This work was part of the project Effective Display
Strategies for Small Screens within the Mobile Informatics
research program, sponsored by SITI, the Swedish Institute
for Information Technology.

REFERENCES
1 Bederson, B., Hollan, J., Pad++: A Zooming Graphical

Interface for Exploring Alternate Interface Physics. In
Proc. UIST ’94, ACM Press, 1994.

2. Bickmore, T.W. and Schilit, B.N. Digestor: Device-
Independent Access to the World Wide Web. In Proc.
Sixth International World Wide Web Conference, pp.
655-663, 1997.

3. Björk, S. and Redström, J. An Alternative to Scrollbars
on Small Screens. In Extended Abstracts of CHI '99,
ACM Press, 1999.

4. Björk, S. and Holmquist, L.E. Formative Evaluation of a
Focus + Context Visualization Technique. In Proc. HCI
’98 (poster presentation), The British HCI Society,
1998.

5. Brown. M.H., Weihl, W.E., Zippers: A Focus+Context

Display of Web Pages, in CD-Rom Proc. WebNet '96,
Association for Advancement of Computing in Educa-
tion (AACE), 1996.

6. Card, S.K., Robertson, G.G. and York, W. The Web-
Book and the Web Forager: An Information Workspace
for the World Wide Web. In Proc. CHI ’96, pp. 111-117,
ACM Press, 1996.

7. Eick, S.G., Steffen, J.L. and Sumner, E.E. SeeSoft - A
Tool for Visualizing Line Oriented Statistics Software.
IEEE Transactions on Software Engineering, 18(11),
1992.

8. Fisher, B., Agelidis, M., Dill, J., Tan, P., Collaud, G.,
Jones, C., CZWeb: Fish-eye Views for Visualizing the
World Wide Web. In Proc. HCI International ’97, pp.
719-722, Elsevier, Amsterdam, 1997.

9. Fox, A., Gribble, S.D., Chawathe, Y. and Brewer, E.A.
29. Adapting to Network and Client Variation Using
Active Proxies: Lessons and Perspectives. IEEE Per-
sonal Communications (invited submission), Sept. 1998.

10. Fox, A., Goldberg, I., Gribble, S.D., Lee, D.C., Polito,
A. and Brewer, E.A. Experience With Top Gun Wing-
man: A Proxy-Based Graphical Web Browser for the
USR PalmPilot. In Proc. IFIP International Conference
on Distributed Systems Platforms and Open Distributed
Processing (Middleware ’98), Lake District, UK, 1998.

11. Furnas, G.W. Generalized Fisheye Views. In Proc. CHI
’86, pp. 16-23, ACM Press, 1986.

12. Grishman, R. Information Extraction: Techniques and
Challenges. Materials for Information Extraction (Inter-
national Summer School SCIE-97), ed. Maria Teresa,
Pazienza, Springer-Verlag, 1997

13. Hearst, M. and Plaunt, P. Subtopic Structuring for Full-
length Document Access. In Proc. ACM SIGIR ’93,
ACM Press, 1993.

14. Holmquist, L.E. Focus+Context Visualization with Flip
Zooming and the Zoom Browser. In Extended Abstracts
of CHI '97, ACM Press, 1997.

15. Holmquist, L.E. When Will Baby Faces Grow Up? In
Proc. HCI International ’99, 1999. (to appear)

16. Holmquist, L.E. and Ahlberg, C. Flip Zooming: A Prac-
tical Focus+Context Approach to Visualizing Large
Information Sets. In Proc. HCI International ’97, pp.
763-766, Elsevier, Amsterdam, 1997.

17. Holmquist, L.E. and Björk, S. A Hierarchical Focus +
Context Method for Image Browsing. In SIGGRAPH '98
Sketches and Applications, ACM Press, 1998.

18. Johnson, C. (ed.). Proc. First Workshop on Human
Computer Interaction with Mobile Devices. URL: http://
www.dcs.gla.ac.uk/~johnson/papers/mobile/

HCIMD1.html, 1998.

19. Kandogan, E., and Shneiderman, B. Elastic Windows: A
Hierarchical Multi-Window World-Wide Web Browser.
In Proc. UIST ’97, pp. 169-177, ACM Press, 1997.

20. Karlgren, J. and Cutting, D. Recognizing Text Genres
with Simple Metrics Using Discriminant Analysis. In
Proc. COLING 94, Kyoto, 1994. (In the Computation
and Language E-Print Archive: cmp-lg/9410008).

21. Karlsson, F., Voutilainen, A., Heikkila, J. and Anttila A.
(eds.) Constraint Grammar, Berlin: Mouton de Gruyter,
1995.

22. Lamping, J., Rao, R. and Pirolli, P. A Focus+Context
Technique Based On Hyperbolic Geometry for Viewing
Large Hierarchies. In Proc. CHI ’95, ACM Press, 1995.

23. Liljeberg, M., Helin, H., Kojo, M., and Raatikainen, K.
MOWGLI WWW Software: Improved Usability of
WWW in Mobile WAN Environments, in Proc. IEEE
Global Internet 1996 Conference, London, England,
November 20-21, 1996.

24. Luhn, H. P. A Statistical Approach to Mechanized
Encoding and Searching of Literary Information. IBM
Journal of Research and Development, 1 (4) 309-317,
1957. Reprinted in Luhn, H.P.: Pioneer of Information
Science, selected works. Claire K. Schultz (ed.). New
York: Sparta, 1968.

25. Marcus, A., Ferrante, J.V., Kinnunen, T., Kuutti, K. and
Sparre, E. Baby Faces: User-Interface Design for Small
Displays. In CHI ’98 Summary, pp. 96-97, ACM Press,
1998.

26.Oracle Project Panama, Connecting Oceans of Informa-
tion. Oracle White Paper, March 1999. URL: http://
www.oracle.com/mobile/panama/panamawp.htm

27. Robertson, G.G. and Mackinlay, J.D. The Document
Lens. In Proc. UIST ’93, pp. 101-108, ACM Press,
1993.

28. Robertson, G.G., Mackinlay, J.D. and Card, S.K. Cone
Trees: Animated 3D Visualization of Hierarchical Infor-
mation. In Proc. CHI ’91, ACM Press, 1991.

29. Robertson, S.E. and Sparck Jones, K. Simple, proven
approaches to text-retrieval. Technical report 356, Com-
puter Laboratory, University of Cambridge, 1996.

30. Sparck Jones, K. A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 28:1, pp. 11-20, 1972.

31. Sun Microsystems. HotJava HTML Component. URL:
http://java.sun.com/products/OV_hotjavaProduct.html

32. WAP Forum, Wireless Application Environment Over-
view, February 3, 1999. URL: http://www.wapforum.org

APPENDIX: THE PAGE CHUNKER

To divide a page of HTML code into a number of pieces or
chunks, each suitable for displaying as a single full-screen
card on a small display, a page chunking program was
developed. It was based on an existing HTML parser (or
more accurately, an SGML parser with a description of
HTML’s elements) written in Java by Richard M. Tobin and
available at the following address:

http://www.cogsci.ed.ac.uk/~richard/ftp-
area/html-parser

First, the page chunker establishes a number of constants,
such as the size of a card (e.g. 160x160 pixels), the typical
width of a character, the height of a line, maximum number
of lines that can fit on a card, and so on. It then reads a piece
of HTML code from an URL and performs a number of
operations depending on the HTML elements encountered.
Operations include:

• Setting flags for elements that can not be split and/or that
are suitable as break-points (e.g. H1-H6, HR, A, IMG)

• Reducing the value for the total remaining space on the
card (e.g. IMG)

• Adapting the width of the HTML element to the maxi-
mum available (e.g. PRE, HR, TABLE)

• Adapting the total size of the HTML element (width and
height) to the maximum available (e.g. IMG, APPLET,
OBJECT)

Additionally, some tags are replaced with tag combinations
that will be handled in a more predictable way during page
rendering; for instance, the paragraph tag <P> was replaced
with
&NBSP;&NBSP;&NBSP;

The chunker also makes sure that no tags are left “open” on
a card, e.g. an opening <H1> with no corresponding closing
</H1>. HTML elements are then added to the card until it is
full, or as close to full as the algorithm can manage, at
which time a new card is started.

After creating the cards, a number of decks are created. The
current design of the flip zooming display in WEST limits
the number of cards simultaneously visible at any time to 7.
For simplicity’s sake the deck creation algorithm simply
tries to create a maximum of 7 decks with as equal a number
of cards as possible. The resulting HTML files are saved in
a file structure corresponding to the decks (i.e. one directory
for every deck) which can then be read by the WEST brows-
ing component.

Pseudocode for the page chunker is as follows:

chunkPage (parameter: URL for HTML page)

parse HTML page
save away header (<head> … </head>)

chunkBody ; (divides page into cards)
collect cards into decks and create corre-

sponding file structure

chunkBody (parameter: HTML element)
 if not (tag=skiptag)

 then
modify tag if needed, and add the (starting)

tag (e.g.), including attributes
(e.g. an image) to body

 else

if (tag=<p>) then reduce available space on
this card with no. of characters on a line

 for (all sub-elements)
if (element=text)

then
addText ; (add this text to the new card)

else (i.e. element=tag)
addTag ; (add this tag to the new

card)
if not (tag skipped) then add finishing tag

(e.g.)

addText
 (divide until it fits)

while (number of characters added so far +
length of new string >= maxlength)

if (tag can not be split)
then

add string to current body

add finishing tags to all open start tags
and finish this body

add corresponding start tags to new body
else

check where it is suitable to break (at
end of paragraph/sentence etc.)

add what we can fit in to the current body
add finishing tags to all open start tags

and finish this body
add corresponding start tags to new body

if (text left)
then add remaining text to current body

addTag

if (break condition) (i.e. is this a tag that
can cause the creation of a new card?)

 then
if (available space on current card is less

than 10% of maximum size)
then

add finishing tags to all open starting

tags and finish this body
add corresponding start tags to new body

chunkBody ; (continue chunking body until done)

